Mixed Effects Models for Complex Data

109,00 €
+ 5,49 € Envío

Mixed Effects Models for Complex Data

  • Marca: Unbranded
Vendido por:

Mixed Effects Models for Complex Data

  • Marca: Unbranded

109,00 €

En existencias
+ 5,49 € Envío

Política de devoluciones de 14 días

Vendido por:

109,00 €

En existencias
+ 5,49 € Envío

Política de devoluciones de 14 días

Métodos de pago:

Descripción

Mixed Effects Models for Complex Data

Although standard mixed effects models are useful in a range of studies other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts missing data measurement errors censoring and outliers. For each class of mixed effects model the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data the book introduces linear mixed effects (LME) models generalized linear mixed models (GLMMs) nonlinear mixed effects (NLME) models and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values measurement errors censoring and outliers. Self-contained coverage of specific topicsSubsequent chapters delve more deeply into missing data problems covariate measurement errors and censored responses in mixed effects models. Focusing on incomplete data the book also covers survival and frailty models joint models of survival and longitudinal data robust methods for mixed effects models marginal generalized estimating equation (GEE) models for longitudinal or clustered data and Bayesian methods for mixed effects models. Background materialIn the appendix the author provides background information such as likelihood theory the Gibbs sampler rejection and importance sampling methods numerical integration methods optimization methods bootstrap and matrix algebra. Failure to properly address missing data measurement errors and other issues in statistical analyses can lead . Language: English
  • Marca: Unbranded
  • Categoría: Educación
  • Idioma: English
  • Número de páginas: 440
  • Fecha de publicación: 2019/09/05
  • Artista: Lang Wu
  • Editor / Marca: CRC Press
  • Formato: Paperback
  • Nº de Fruugo : 337358561-740984993
  • ISBN: 9780367384913

Entrega y devolución

Enviado en un plazo de 6 días

  • STANDARD: 5,49 € - Entrega entre mié 14 enero 2026–lun 19 enero 2026

Envío desde Reino Unido.

Hacemos todo lo posible para asegurarnos de que se le entreguen los productos que pida en su totalidad y de acuerdo con sus especificaciones. Sin embargo, si recibe un pedido incompleto o artículos diferentes a los que pidió, o hay alguna otra razón por la que no está satisfecho con el pedido, puede devolver el mismo o cualquier producto incluido en él y obtener un reembolso completo por los artículos. Vea la política de devolución completa